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Abstract. A Simulation Extractable (SE) zk-SNARK enables a prover
to prove that she knows a witness for an instance in a way that the
proof: (1) is succinct and can be veri�ed very e�ciently; (2) does not
leak information about the witness; (3) is simulation-extractable -an ad-
versary cannot come out with a new valid proof unless it knows a wit-
ness, even if it has already seen arbitrary number of simulated proofs.
Non-malleable succinct proofs and very e�cient veri�cation make SE zk-
SNARKs an elegant tool in various privacy-preserving applications such
as cryptocurrencies, smart contracts and etc. In Eurocrypt 2016, Groth
proposed the most e�cient pairing-based zk-SNARK in the CRS model,
but its proof is vulnerable to the malleability attacks. In this paper, we
show that one can e�ciently achieve simulation extractability in Groth's
zk-SNARK by some changes in the underlying language using an OR
construction. Analysis and implementations show that in practical cases
overload has minimal e�ects on the e�ciency of original scheme which
currently is the most e�cient zk-SNARK. In new construction, proof size
is extended with one element from G1, one element from G2, plus a bit
string that totally is less than 256 bytes for 128-bit security. Its veri�ca-
tion is dominated with 4 pairings which is the most e�cient veri�cation
among current SE zk-SNARKs.
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1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proofs are one of the central design
tools in cryptographically secure systems, allowing one to verify the veracity
of statements without leaking extra information. Technically speaking, a NIZK
allows a prover to prove that, for a public statement x she knows a witness w
which hold in a relation R, (x,w) ∈ R, without leaking any information about
her witness w. In the Common Reference String (CRS) model [BFM88], a NIZK
is a three-party protocol that works as the following. First, there exists a trusted
party K (a.k.a. CRS generator) who takes security parameter λ as an input and
generates CRS elements crs := (crsP, crsV) which later will be used by prover
and veri�er for proof generation and proof veri�cation, respectively. Then the
prover P gets crsP, the statement x and her witness w and generates a proof π,
attesting that for the statement x, I know a witness w s.t. (x,w) ∈ R. Finally, a
veri�er V takes crsV, the statement x and the proof π and returns either accept
(if proof is valid) or reject (if veri�cation failed). If V does not need any secret
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information to verify the proof π, the proof is called publicly veri�able that can
be veri�ed by many public veri�ers (e.g. by nodes of a distributed network).

Generally, a NIZK argument satis�es three properties known as completeness,
soundness and zero-knowledge. Completeness guarantees that an honest P always
convinces an honest V. The soundness ensures that a malicious P cannot convince
the honest V except with negligible probability. Zero-knowledge property assures
that the proof generated by P does not leak any information about the witness
w. Formal de�nitions will be given later in Sec. 2.1.

During last few years, a very e�cient family of NIZK proof systems are devel-
oped which are known as zero-knowledge Succinct Non-interactive Argument of
Knowledge (zk-SNARK) [Gro10,Lip12,PHGR13,BCTV13,Gro16,GM17]. A zk-
SNARK generates a succinct proof that allows a computationally weak veri�er to
e�ciently verify the proof. Di�erently from a standard NIZK, an SNARK guar-
antees knowledge-soundness that is a stronger notion in comparison with stan-
dard soundness. Knowledge-soundness (more precisely non-black-box knowledge
soundness) guarantees that if an adversarial prover manages to come out with an
acceptable proof, there exists an e�cient extractor which given source code and
random coins of the adversary can e�ciently extract the witness. Knowledge-
soundness of zk-SNARKs is non-black-box and achieved under knowledge as-
sumptions [Dam92]1. Impossibility result of Gentry and Wichs [GW11] also con-
�rms that extraction in zk-SNARKs should be based on non-falsi�able assump-
tions (e.g. knowledge assumptions). By the date, the most e�cient zk-SNARK is
proposed by Groth [Gro16] in Eurocrypt 2016, that is constructed for Quadratic
Arithmetic Programs (QAPs) and works in a bilinear group. The proof in Groth's
zk-SNARK consists of 2 elements in G1 and 1 element in G2, and V needs to
check one equation that is dominated with 3 pairings.

In practice, however knowledge-soundness is an ampli�ed notion in com-
parison with standard soundness but still a knowledge-sound proof is vulner-
able to the man-in-the-middle attacks 2. In other words, knowledge sound-
ness only guarantees that a successful prover knows the witness, and it does
not guarantee non-malleability of proofs. Due to this fact, zk-SNARKs that
only guarantee knowledge-soundness cannot be deployed in many of prac-
tical applications straightforwardly [BCG+14,KMS+16,JKS16,Bag19]. For in-
stance, privacy-preserving crypocurrencies such as Zerocash that uses zk-
SNARKs [BCTV13,Gro16] as a subroutine, takes extra steps to prevent mal-
leability attacks in the SNARK proofs for pour transactions [BCG+14]. Sim-
ilarly, privacy-preserving smart contract systems [KMS+16,JKS16] show that
knowledge-soundness of zk-SNARKs is not enough for their systems. Simulation-

1 In non-black-box extraction, extractor extA needs to get full access to the source
code and random coins of adversary A to be able to extract the witness. But in
black-box extraction, one can extract the witnesses straightforwardly from the proof
using CRS trapdoors [Bag19].

2 For instance, in the veri�cation equations that have paring structure such as a•b = c,
where a and b are proof elements from G1 and G2 with prime orders, one can see
that such veri�cation equation will be satis�ed also for new proof elements such as
a′ = ar and b′ = b1/r, for arbitrary r ← Zp.
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knowledge soundness which also is known as simulation extractability, is an am-
pli�ed version of knowledge-soundness that is proposed to achieve extractability
and non-malleable proofs. A Simulation-Extractable (SE) zk-SNARK guarantees
that the proof is succinct, zero-knowledge and simulation-extractable. Simulation
extractability implies that an adversary cannot generate a new proof unless he
knows a witness, even if he has seen arbitrary number of simulated proofs.

In Crypto 2017, Groth and Maller [GM17] proposed the �rst SE zk-SNARK
in the CRS model that allows to generate non-malleable proofs (referred as GM
zk-SNARK). They also proved that a SE zk-SNARK requires at least two veri-
�cation equations. Their scheme is constructed in the bilinear groups for Square
Arithmetic Programs (SAPs) and achieves the lower bound in the number of
veri�cation equations. To verify a proof, V needs to check two equations that are
dominated with 5 pairings [GM17]. To guarantee non-malleability in proofs, their
scheme removes one of the bilinear group generators from the CRS, which might
create some di�erent challenges in some practical cases (e.g. in CRS generation
by multi-party computation protocols [ABL+19], or in achieving subversion secu-
rity [ABLZ17]). Above all, GM zk-SNARK is constructed for SAPs that require
twice number of multiplication (MUL) gates, as ab = ((a+ b)2− (a− b)2)/4. Im-
plementations also approves that for a particular arithmetic circuit, Groth's zk-
SNARK [Gro16] considerably has better e�ciency than GM zk-SNARK [GM17],
but Gorth's scheme does not achieve simulation extractability, which makes its
proofs vulnerable to the malleability attacks. For a Rank-1 Constraint System
(R1CS) instance, e�ciency metrics of both schemes are compared in Tab. 1.

Table 1: Performance of zk-SNARKs proposed by Groth and Maller [GM17],
Groth [Gro16] and this work for arithmetic circuit satis�ability with an R1CS
instance with 106 constraints and 106 variables, where 10 are input variables.
SE: Simulation Extractable, KS: Knowledge Soundness, BS: λ-Bit String.

SNARK CRS size, run time Proof size, P run time Veri�cation, V time Security

[GM17] 376 MB, 103 sec 2G1 + 1G2, 120 sec 5 pairings, 2.3 ms SE

[Gro16] 196 MB, 75 sec 2G1 + 1G2, 83 sec 3 pairings, 1.4 ms KS

this work 205 MB, 80.5 sec 3G1 + 2G2 + 1BS, 90 sec 4 pairings, 2.0 ms SE

Problem statement. By reminding that currently Groth's zk-SNARK [Gro16]
has the best e�ciency but only achieves knowledge-soundness, and the fact that
GM zk-SNARK [GM17] ensures simulation extractability but with less e�ciency
and only one group generator in the CRS, a research question can be raised as if
we can achieve simulation extractability in Groth's scheme e�ciently? Such that,
new scheme will 1) work for QAPs 2) have both generators of bilinear groups in
the CRS 3) have a comparable or even better e�ciency than GM zk-SNARK.

Our Contribution. In this paper, we address the questions discussed above
and propose a variation of Groth's zk-SNARK that can achieve simulation ex-
tractability with minimal e�ciency loss in practical cases. To this end, we use
the known OR technique and de�ne a new language L′ based on the language L
in Groth's zk-SNARK that is inspired by the works of De Santis et al. [DDO+01]
and Kosba et al. [KZM+15].
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De�ning new language based on original language results some changes in
algorithms of the original scheme. Evaluations show that in practical cases, new
changes have minimal a�ects on the e�ciency of original scheme which currently
is the state-of-the-art. Strictly speaking, the veri�cation of new scheme has two
equations as the optimal case, and only adds 1 pairing to the veri�cation of
Groth's scheme. As a result, totally veri�cation of new scheme is dominated
with 4 pairings which is less than 5 pairings in GM SE zk-SNARK [GM17].
Empirical analysis show that, for the considered instance in Tab. 1, veri�cation
of new scheme takes 2.0 milliseconds. In the proposed variation, the proof size
will be extended by one element from G1, one element from G2 plus a 256-bit
string, that totally will be 3 elements from G1, 2 elements from G2 and one 256-
bit string, which for 128-bit security still it is less than 256 bytes. The prover
should give a proof for a new circuit that has around 50× 103 gates more than
before, where in practical scenarios the overload is very small. I.e. Zerocash
uses zk-SNARKs to give a proof for a circuit with approximately 2× 106 MUL
gates3. In comparison with P running times in Tab. 1, prover of new scheme
requires 90 sec to generate a proof; particularly with smaller CRS in comparison
with GM [GM17] scheme (with 205 MB, instead of 376 MB). E�ciency of the
proposed variation is summarized in Tab. 1.

Discussion and Related Works. Among di�erent NIZK arguments, zk-
SNARKs are the most practically-interested ones; because of their succinct
proofs and very e�cient veri�cations. But as majority of them guarantee
knowledge-soundness by default, that is vulnerable to the man-in-the-middle
attacks, so they cannot be deployed directly in practical systems. Actually, in
constructing large cryptographic systems, this issue can make some challenges for
non-expert users. To address this, recently constructing e�cient SE zk-SNARKs,
that by default can guarantee non-malleability of proofs, has gotten more atten-
tion [GM17,BG18,KLO19,Lip19]. In [BG18], Bowe and Ariel also proposed a
variation of Groth's scheme that achieves simulation extractability but in the
Random Oracle (RO) model. In their variation, the proof consists of 3 elements
from G1 and 2 elements from G2, and veri�cation is dominated with 5 pairings.
A good point about their case is that they keep the language as original one, and
add some computations to the proof generation and veri�cation with relying on
a random oracle that returns group elements4. Implementing such random oracle
might cause some challenges in practice. Since Groth's zk-SNARK is constructed
and proven in the CRS model, so we aim to achieve simulation extractability in
the same model using more practical cryptographic primitives.

The rest of paper is organized as follows; Sec. 2 introduces notations and pre-
liminaries. A simulation-extractable version of Groth's zk-SNARK is presented
in Sec. 3. In Sec. 4, we discuss about instantiation and e�ciency of the proposed
construction. Finally we conclude the paper in Sec. 5.

3 Their initial circuit had ≈ 4×106 gates, but recently they optimized the system and
reduced the number of gates to ≈ 2× 106, but still it is very larger than ≈ 50× 103.

4 Intuitively, some part of their changes play the role of a one-time secure signature
scheme, but add two pairings to the veri�cation of original scheme.
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2 Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. Let λ ∈ N be the information-theoretic security parameter, say λ = 128.
All adversaries will be stateful. For an algorithm A, let im(A) be the image of A,
i.e. the set of valid outputs ofA, let RND(A) denote the random tape ofA, and let
r ← RND(A) denote sampling of a randomizer r of su�cient length forA's needs.
By y ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
outputs y. For algorithms A and extA, we write (y ‖ y′) ← (A‖ extA)(x; r) as a
shorthand for �y ← A(x; r), y′ ← extA(x; r)�. We denote by negl(λ) an arbitrary
negligible function in λ. For distributions A and B, A ≈c B means that they are
computationally indistinguishable.

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gµ, [a]µ = a [1]µ, where [1]µ is a �xed generator of

Gµ. A bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2),
where p (a large prime) is the order of cyclic abelian groups G1, G2, and GT .
Finally, ê : G1 × G2 → GT is an e�cient non-degenerate bilinear pairing,
s.t. ê([a]1 , [b]2) = [ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2). The current recom-
mendation is to use an optimal (asymmetric) Ate pairing [HSV06] over Barreto-
Naehrig curves [BN05]. In that case, at security level of λ = 99, an element of
G1/G2/GT can be represented in respectively 256/512/3072 bits.5

Next we review QAPs that de�nes NP-complete language speci�ed by a
quadratic equation over polynomials and have reduction from the language
Circuit-SAT [GGPR13,Gro16].
Quadratic Arithmetic Programs. QAP was introduced by Gennaro et
al. [GGPR13] as a language where for an input x and witness w, (x,w) ∈ R
can be veri�ed by using a parallel quadratic check. Consequently, any e�cient
simulation-extractable zk-SNARK for QAP results in an e�cient simulation-
extractable zk-SNARK for Circuit-SAT. An QAP instance Qp is speci�ed by
the so de�ned (Zp,m0, {uj , vj , wj}mj=0, `(X)). This instance de�nes the following
relation, where we assume that A0 = 1:

R =

{
(x,w) : x = (A1, . . . , Am0)

> ∧ w = (Am0+1, . . . , Am)>∧(∑m
j=0Ajuj(X)

)(∑m
j=0Ajvj(X)

)
≡
∑m
j=0Ajwj(X) (mod `(X))

}
.

Alternatively, (x,w) ∈ R if there exists a (degree ≤ n − 2) polynomial h(X),

s.t.
(∑m

j=0Ajuj(X)
)(∑m

j=0Ajvj(X)
)
−
∑m
j=0Ajwj(X) = h(X)`(X) , where

`(X) =
∏n
i=1(X − ωi−1) is a polynomial related to Lagrange interpolation, and

ω is an n-th primitive root of unity modulo p. Roughly speaking, the goal of the
prover of a zk-SNARK for QAP [GGPR13] is to prove that for public statement
(A1, . . . , Am0

) and A0 = 1, she knows the witnesses (Am0+1, . . . , Am) and a
degree ≤ n− 2 polynomial h(X), such that above equation holds.

5 The value λ = 99 takes account recent cryptanalysis of the Barreto-Naehrig curves by
Kim and Barbulescu [KB16,BD17]. One can use di�erent settings for 128-bit security.
Since we use the library libsnark [BCTV13] that currently o�ers the mentioned
security level, we just refer the reader to [KB16,BD17] for more discussion.
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One-time Signature Schemes [Lam79]. A one-time signature (OTS) scheme is a
digital signature scheme that can be used to sign one message per key pair. An
OTS scheme is made up three PPT algorithms (KGen,Sign,SigVerify), for key
generation, signing, and veri�cation, respectively. A signature scheme is complete
if an honesty generated signature by Sign always successfully passes the veri�ca-
tions by SigVerify. We say that a signature scheme is strong unforgeability under
a one-time message attack (SUF-1CMA) if all PPT adversaries have at most
negligible advantage in the following experiment.
EXPSUF−1CMA:

� Setup: The challenger C runs KGen(λ) to generate a signing-veri�cation key
pair (sk, pk) and gives pk to the adversary A,

� Signing Query: A selects a message m from message space and gives it to
challenger C. Challenger C computes σ = Sign(sk,m) and sends it to A,

� Forgery: A outputs a message-signature pair (m∗, σ∗),

where adversary's advantage in above experiment is de�ned as AdvA(λ) =
Pr[SigVerify(pk,m∗, σ∗) = 1 ∧ (m∗, σ∗) 6= (m,σ)].

2.1 De�nitions

We use the de�nitions of NIZK arguments from [Gro16,GM17]. Let R be a
relation generator, such that R(1λ) returns a polynomial-time decidable binary
relation R = {(x,w)}. Here, x is the statement and w is the witness. Security
parameter λ can be deduced from the description of R. The relation generator
also outputs auxiliary information ξ that will be given to the honest parties and
the adversary. As in [Gro16,ABLZ17], ξ is the value returned by BGgen(1λ),
so ξ is given as an input to the honest parties; if needed, one can include an
additional auxiliary input to the adversary. Let LR = {x : ∃w, (x,w) ∈ R} be
an NP-language. A NIZK argument system Ψ for R consists of tuple of PPT
algorithms (K,P,V,Sim), such that:
CRS generator: K is a PPT algorithm that, given (R, ξ) where (R, ξ) ∈
im(R(1λ)), outputs crs := (crsP, crsV) and stores trapdoors of crs as ts. We
distinguish crsP (needed by the prover) from crsV (needed by the veri�er).
Prover: P is a PPT algorithm that, given (R, ξ, crsP, x,w), where (x,w) ∈ R,
outputs an argument π. Otherwise, it outputs ⊥.
Veri�er: V is a PPT algorithm that, given (R, ξ, crsV, x, π), returns either 0
(reject) or 1 (accept).
Simulator: Sim is a PPT algorithm that, given (R, ξ, crs, ts, x), outputs a sim-
ulated argument π.

A zk-SNARK system is required to be complete, knowledge-sound, ZK, and
succinct as in the following de�nitions.

De�nition 1 (Perfect Completeness). A non-interactive argument Ψ is
perfectly complete for R, if for all λ, all (R, ξ) ∈ im(R(1λ)), and (x,w) ∈ R,
Pr
[
crs← K(R, ξ), π ← P(R, ξ, crsP, x,w) : V(R, ξ, crsV, x, π) = 1

]
= 1 .
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De�nition 2 (Computationally Knowledge-Soundness [Gro16]). A
non-interactive argument Ψ is computationally (adaptively) knowledge-sound for
R, if for every NUPPT A, there exists a NUPPT extractor extA, s.t. for all λ,

Pr

[
crs← K(R, ξ), r ← RND(A), ((x, π) ‖w)← (A‖ extA)(R, ξ, crs; r) :
(x,w) 6∈ R ∧ V(R, ξ, crsV, x, π) = 1

]
= negl(λ) .

Here, ξ can be seen as a common auxiliary input to A and extA that is generated
by using a benign [BCPR14] relation generator.

De�nition 3 (Computationally Zero-Knowledge (ZK) [Gro16]). A
non-interactive argument Ψ is computationally ZK for R, if for all λ, all
(R, ξ) ∈ im(R(1λ)), and for all NUPPT A, ε0 ≈c ε1, where

εb = Pr[(crs ‖ ts)← K(R, ξ) : AOb(·,·)(R, ξ, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, ξ, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, otherwise
it returns Sim(R, ξ, crs, ts, x). Ψ is perfect ZK for R if one requires that ε0 = ε1.

De�nition 4 (Succinctness [GM17]). A non-interactive argument Ψ is suc-
cinct if the proof size is polynomial in λ and the veri�er's computation time is
polynomial in security parameter λ and the size of instance x.

In the rest, we recall the de�nition of (non-black-box) simulation extractabil-
ity that we aim to achieve in a variation of Groth's zk-SNARK.

De�nition 5 ((Non-Black-Box) Simulation Extractability [GM17]). A
non-interactive argument Ψ is (non-black-box) simulation-extractable for R, if
for any NUPPT A, there exists a NUPPT extractor extA s.t. for all λ,

Pr

[
crs← K(R, ξ), r ← RND(A), ((x, π) ‖w)← (AO(.) ‖ extA)(R, ξ, crs; r) :
(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξ, crsV, x, π) = 1

]
= negl(λ) .

Here, Q is the set of (x, π)-pairs generated by the adversary's queries to O(.).
Note that (non-black-box) simulation extractability implies knowledge-soundness.

3 A Variation of Groth's zk-SNARK

As brie�y discussed in the introduction, Groth's zk-SNARK [Gro16] guarantees
knowledge-soundness (de�ned in Def. 2) which is weaker than simulation ex-
tractability. Technically speaking, knowledge-sound proofs are not secure against
man-in-the-middle attacks. In this section, we present a variation of Groth's zk-
SNARK which can achieve (non-black-box) simulation extractability, de�ned in
Def. 5, that can guarantee non-malleability of the proofs.
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3.1 New Construction

In construction of new variation, we de�ne a new language L′, using an OR
technique [DDO+01,KZM+15], which combines original language L in Groth's
zk-SNARK with a commitment scheme which commits to a secret randomness as
a key for a pseudorandom function. Let (KGen,Sign,SigVerify) be a one-time sig-
nature scheme and (Com,ComVerify) be a perfectly binding commitment scheme.

Given the language L with the corresponding NP relation RL, we de�ne a
new language L′ such that ((x, µ, pkSign, ρ), (w, s, r)) ∈ RL′ i�:(

(x,w) ∈ RL ∨ (µ = fs(pkSign) ∧ ρ = Com(s, r))
)
,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family. The
intuition for a pseudo-random function fs(·) is that without the knowledge of
the key s, fs(·) behaves like a true random function. However, given s, one can
compute fs(·) easily. In new language L′, for a statement-witness pair to be valid,
either a witness forRL is provided (by honest prover) or an opening to ρ together
with the value of µ = fs(pkSign) is provided (by simulator), where s is the open
value of ρ (in CRS). One may note that in order for a statement to pass the veri-
�cation without a valid witness, the prover must generate fs(pkSign) without the
knowledge of s (thus breaking the pseudo-random function fs). By considering
new language L′, zk-SNARK of Groth for the relation R constructed from PPT
algorithms (K,P,V,Sim) can be lifted to a simulation-extractable zk-SNARK Ψ ′

with PPT algorithms (K′,P′,V′,Sim′) as described in Fig. 1. To simplify the de-
scription, we assume Com takes exactly λ random bits as randomness and that
the witness for original language L is exactly λ bits; it is straight forward to
adapt the proof when they are of di�erent lengths [KZM+15]. Note that in the
simulation-extractable zk-SNARK Ψ ′, the algorithms of original scheme will be
executed for a new arithmetic circuit which encodes new language L′ and has
slightly larger number of gates. Namely, CRS generation algorithm of Groth's
zk-SNARK will be executed with a new QAP instance that has larger parame-
ters; (crs ‖ ts)← K(RL′ , ξ). Similarly prover of new variation will execute prover
of Groth's zk-SNARK with a new arithmetic circuit that has larger number
of gates; namely π ← P(RL′ , ξ, crs, (x, z0, pkSign, ρ), (w, z1, z2)), where z1 and z2
play the role of witnesses s and r for prover.

3.2 Security Proofs

In the rest we present security proofs of the proposed scheme.

Theorem 1 (Completeness). The variation of Groth's zk-SNARK described
in Sec. 3.1, guarantees completeness.

Proof. In new scheme internal computations of P and V are the same as original
one, except few extra e�cient computations. Precisely, P needs to do the compu-
tation for a new instance that has slightly larger size (e.g. n = nold+nnew, where
nnew is the number of MUL gates added to the old circuit) and sign the proof
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CRS generator K′(RL, ξ): Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ← {0, 1}λ; ρ :=
Com(s, r); and output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new sim-
ulation trapdoor.

Prover P′(RL, ξ, crs
′, x,w): Parse crs′ := (crs, ρ); abort if (x,w) /∈ RL; generate

(pkSign, skSign) ← KGen(1λ); sample z0, z1, z2 ← {0, 1}λ; generate π ← P(RL′ , ξ,
crs, (x, z0, pkSign, ρ), (w, z1, z2)) using the prover of Groth's scheme; sign σ ←
Sign(skSign, (x, z0, π)); and return π′ := (z0, π, pkSign, σ).

Veri�er V′(RL, ξ, crs
′, x, π′): Parse crs′ := (crs, ρ) and π′ := (z0, π, pkSign, σ); abort

if SigVerify(pkSign, (x, z0, π), σ) = 0; call the veri�er of Groth's scheme V(RL′ ,
ξ, crs, (x, z0, pkSign, ρ), π) and abort if it outputs 0.

Simulator Sim′(RL, ξ, crs
′, ts′, x): Parse crs′ := (crs, ρ) and ts′ := (ts, (s, r)); gen-

erate (pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); generate π ← Sim(RL′ ,
ξ, crs, (x, µ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign, (x, µ, π)); and output
π′ := (µ, π, pkSign, σ).

Fig. 1: A variation of Groth's zk-SNARK.

and statement with a one-time signature scheme. So following the completeness
of original scheme, and the fact that the deployed signature scheme is complete,
which means SigVerify(pkSign,m,Sign(m, skSign)) = 1, one can conclude that the
modi�ed construction satis�es completeness. ut

Theorem 2 (Zero-Knowledge). Assume that Groth's zk-SNARK satis�es
computational zero-knowledge, that the pseudo-random function family is secure,
that the commitment scheme is perfectly binding and computational hiding, and
that the one-time signature scheme is unforgeable, then the presented SNARK
described in Sec. 3.1, guarantees computational zero-knowledge.

Proof. We write a series of hybrid experiments which start from an experiment
with the simulator and ends with an experiment that uses the real prover.
We show that all experiments are two-by-two indistinguishable. Changes be-
tween successive experiments are shown with highlights. Recall that Groth's
zk-SNARK guarantees perfect zero-knowledge and the simulator of the modi�ed
scheme is expressed in Fig. 1. Now consider the following experiments,

EXP1(simulator):

� Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ← {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is simulation trapdoor.

� De�ne function O(x,w): Abort if (x,w) 6∈ RL; (pkSign, skSign) ← KGen(1λ);
set µ = fs(pkSign); generate π ← Sim(RL′ , ξ, crs, (x, µ, pkSign, ρ), ts

′); sign
σ ← Sign(skSign, (x, µ, π)); return π

′ := (µ, π, pkSign, σ).

� b← AO(x,w)(crs′)

EXP2(separate secret key of pseudo random function):

� Setup: Sample (crs ‖ ts)← K(RL′ , ξ); s′, s, r ← {0, 1}λ ; ρ := Com(s′, r) ; and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, s′, r))); where ts′ are new trapdoors.

� De�ne function O(x,w): Abort if (x,w) 6∈ RL; generate
(pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); generate π ←
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Sim(RL′ , ξ, crs, (x, µ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign, (x, µ, π));
return π′ := (µ, π, pkSign, σ).

� b← AO(x,w)(crs′)

Lemma 1. If the underlying commitment scheme is computationally hiding,
then for two experiments EXP2 and EXP1 we have Pr[EXP2] ≈c Pr[EXP1].

Proof. Computationally hiding property of a commitment scheme implies that
Com(m1, r) is computationally indistinguishable from Com(m2, r). So this prop-
erty straightforwardly results the lemma. ut

EXP3(replace pseudo random function):

� Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s′, /s, r ← {0, 1}λ; ρ := Com(s′, r);
and output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (/s , s′, r))); where ts′ is simulation
trapdoor and barred characters such as s/ are removed characters.

� De�ne function O(x,w): Abort if (x,w) 6∈ RL; (pkSign, skSign) ← KGen(1λ);

set µ← {0, 1}λ ; generate π ← Sim(RL′ , ξ, crs, (x, µ, pkSign, ρ), (ts ‖ (s′, r)));
sign σ ← Sign(skSign, (x, µ, π)); return π

′ := (µ, π, pkSign, σ).

� b← AO(x,w)(crs′)

Lemma 2. If the pseudo random function fs(·) is secure and the underlying
one-time signature scheme is unforgeable, we have Pr[EXP3] ≈c Pr[EXP2].

Proof. By considering that the signature scheme is secure, we note that the
generated pkSign is unique with overwhelming probability. Additionally, we can
replace the pseudo random function fs(·) with a true random function that will
result EXP4. By considering unique values of pkSign and indistinguishability of
output of fs(·) and truly random function, one can conclude the claim. ut

EXP4(prover):

� Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s′, r ← {0, 1}λ; ρ := Com(s′, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s′, r))); where ts′ is simulation trapdoor.

� De�ne function O(x,w): Abort if (x,w) 6∈ RL; (pkSign, skSign) ← KGen(1λ);

set µ ← {0, 1}λ (µ plays the role of z0 in Fig. 1); sample z1, z2 ←
{0, 1}λ; generate π ← P(RL′ , ξ, crs, (x, µ, pkSign, ρ), (w, z1, z2)) ; sign σ ←
Sign(skSign, (x, µ, π)); return π

′ := (µ, π, pkSign, σ).

� b← AO(x,w)(crs′)

Lemma 3. If Groth's zk-SNARK guarantees zero-knowledge, then we have
Pr[EXP4] ≈c Pr[EXP3].

Proof. The last experiment exactly models the real prover of construction in
Fig. 1, and as already Groth's scheme guarantees zero-knowledge, so one can
conclude that the real proof in experiment EXP4 is indistinguishable from the
simulated proof in EXP3. Intuitively this is because all new elements added to
the new construction are chosen randomly and independently. ut

This concludes the main theorem. ut
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Theorem 3 ((Non-Black-Box) Simulation Extractability). Assume that
Groth's zk-SNARK satis�es knowledge soundness and computational zero-
knowledge, that the pseudo-random function family is secure, that the commit-
ment scheme is perfectly binding and computational hiding, and that the one-
time signature scheme is unforgeable, then the presented SNARK described in
Sec. 3.1, guarantees (non-black-box) simulation extractability.

Proof. Similarly, we write a sequence of hybrid experiences and �nally show that
the success probability in the last game is negligible. Recall that Groth's scheme
is proven to achieve knowledge-soundness (de�ned in Def. 2). Now consider the
following game,

EXP1(main experiment):

� Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ← {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new CRS trapdoor.

� De�ne function O(x): (pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); gen-
erate π ← P(RL′ , ξ, crs, (x, µ, pkSign, ρ), (w, (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

� (x, π′)← AO(x)(crs′).
� Parse π′ := (µ, π, pkSign, σ); w← extA(crs′, x, π, ξ).
� Return 1 i� ((x, π′) 6∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ ((x,w) 6∈ RL);
where Q shows the set of statement-proof pairs generated by O(x).

EXP2(relaxing the return checking):

� Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ← {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new CRS trapdoor.

� De�ne function O(x): (pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); gen-
erate π ← P(RL′ , ξ, crs, (x, µ, pkSign, ρ), (w, (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

� (x, π′)← AO(x)(crs′).
� Parse π′ := (µ, π, pkSign, σ); w← extA(crs′, x, π, ξ).
� Return 1 i� ((x, π′) 6∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign 6∈ PK) ∧

(µ = fs(pkSign)) ; where Q is the set of statement-proof pairs and PK is the

set of signature veri�cation keys, both generated by O(x).

Lemma 4. If the one-time signature scheme is unforgeable, and Groth's scheme
guarantees knowledge-soundness, then Pr[EXP2] ≤ Pr[EXP1] + negl(λ).

Proof. We note that if (x, π′) 6∈ Q and "pkSign from (x, π′), has been generated
by O(·)", then the (x, µ, π) is a valid message/signature pairs. Therefore by
unforgeability of the signature scheme, we know that (x, π) 6∈ Q and "pkSign has
been generated by O(·)" happens with negligible probability, which allows us to
focus on pkSign 6∈ PK.

Now, due to knowledge-soundness of the original scheme (there is an extractor
extA where can extract witness from A), if some witness is valid for L′ and
(x,w) 6∈ RL, so we conclude it must be the case that there exists some s′, such
that ρ is valid commitment of s′ and µ = fs′(pkSign), which by perfectly binding
property of the commitment scheme, it implies µ = fs(pkSign). ut
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EXP3(simulator):

� Setup: Sample (crs ‖ ts) ← K(RL′ , ξ); s, r ← {0, 1}λ; ρ := Com(s, r); and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new CRS trapdoor.

� De�ne function O(x): (pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); gen-

erate π ← Sim(RL′ , ξ, crs, (x, µ, pkSign, ρ), (ts ‖ (s, r))) ; sign σ ← Sign(skSign,

(x, µ, π)); return π′ := (µ, π, pkSign, σ).

� (x, π′)← AO(x)(crs′).
� Parse π′ := (µ, π, pkSign, σ); w← extA(crs′, x, π, ξ).
� Return 1 i� ((x, π′) 6∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign 6∈ PK) ∧

(µ = fs(pkSign)); where Q is the set of statement-proof pairs and PK is the
set of signature veri�cation keys, both generated by O(x).

Lemma 5. If Groth's SNARK guarantees zero-knowledge, then for two experi-
ments EXP3 and EXP2, we have Pr[EXP3] ≤ Pr[EXP2] + negl(λ).

Proof. As the original scheme ensures (perfect) zero-knowledge, so it implies no
polynomial time adversary can distinguish a proof generated by the simulator
from a proof that is generated by the prover. So, as we are running in polynomial
time, thus two experiments are indistinguishable. ut

EXP4(separating secret key of pseudo random function):

� Setup: Sample (crs ‖ ts)← K(RL′ , ξ); s′, s, r ← {0, 1}λ ; ρ := Com(s′, r) ; and
output (crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, s′, r))); where ts′ is new CRS trapdoor.

� De�ne function O(x): (pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); gener-
ate π ← Sim(RL′ , ξ, crs, (x, µ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

� (x, π′)← AO(x)(crs′).
� Parse π′ := (µ, π, pkSign, σ); w← extA(crs′, x, π, ξ).
� Return 1 i� ((x, π′) 6∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign 6∈ PK) ∧

(µ = fs(pkSign)); where Q is the set of statement-proof pairs and PK is the
set of signature veri�cation keys, both generated by O(x).

Lemma 6. If the commitment scheme used in the CRS generation is computa-
tionally hiding, then Pr[EXP4] ≤ Pr[EXP3] + negl(λ).

Proof. Computationally hiding of a commitment scheme implies that Com(m1, r)
and Com(m2, r) are computationally indistinguishable, as in this lemma. ut

EXP5(replace pseudo random function fs(·) with true random function F (·)):

� Setup: Sample (crs||ts)← K(RL′ , ξ); s′, s/, r ← {0, 1}λ; ρ := Com(s′, r); and

output (crs′||ts′) := ((crs, ρ)||(ts, (s/ , s′, r))); where ts′ is simulation trapdoor.

� De�ne function O(x): (pkSign, skSign) ← KGen(1λ); set µ = F (pkSign) ; gener-

ate π ← Sim(RL′ , ξ, crs, (x, µ, pkSign, ρ), (ts||(s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

� (x, π′)← AO(x)(crs′).
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� Parse π′ := (µ, π, pkSign, σ); w← extA(crs′, x, π, ξ).
� Return 1 i� ((x, π′) 6∈ Q) ∧ (V′(RL, ξ, crs′, x, π′) = 1) ∧ (pkSign 6∈ PK) ∧

(µ = F (pkSign)); where Q is the set of statement-proof pairs and PK is the

set of signature veri�cation keys, both generated by O(x).

Lemma 7. If the truly random function is secure, then Pr[EXP4] ≤ Pr[EXP5].

Proof. By assuming function F (·) is secure, we can conclude no polynomial time
adversary can distinguish an output of the true random function F (·) from an
output of the pseudo random function fs(·). Indeed, experiment EXP5 can be
converted to an adversary for the game of a true random function. ut

Claim. For experiment EXP5, we have Pr[EXP5] ≤ 2−λ.

Proof. From veri�cation we know pkSign 6∈ PK, therefore F (pkSign) has not been
queried already. Thus, we will see F (pkSign) as a newly generated random string
independent from µ, which implies adversary only can guess. ut

This completes proof of the main theorem. ut

4 Instantiation and E�ciency Evaluation

We observed in Sec. 3.1 that de�ning the new language L′ led to some changes
in the algorithms of original scheme. In this section, we discuss how e�cient can
be such changes (described in Fig. 1). We �rst discuss how the used primitives
can be instantiated and then evaluate e�ciency of the whole protocol.

Recall that in result of new changes, one needed a pseudo random function, a
commitment scheme and a one-time secure signature scheme. In similar practical
cases, both pseudo random function and commitment scheme are instantiated
using an e�cient SHA-256 circuit that has around ≈ 25 × 103 MUL gates for
one block (512-bit input) [BCG+14,KMS+16]6.

The next primitive that we need to instantiate is the digital signature that
should be one-time signature scheme and unforgeable. As Groth's zk-SNARK
is paring-based and is constructed with bilinear groups, so we instantiate the
signature scheme with Boneh and Boyen's signature [BB08] where works in bi-
linear groups and has very e�cient veri�cation; it requires only one pairing and
one multi-exponentiation. Their scheme is proven to guarantee unforgeability
under chosen message attack and consequently unforgeability under one-time
chosen message attack. The key generation, signing and veri�cation of Boneh
and Boyen's signature scheme [BB08] for message m is summarized below.

� Key Generation, (pkSign, skSign) ← KGen(1λ): Given system parameters
for a prime-order bilinear group (p,G1,G2,GT , ê, [1]1 , [1]2), randomly selects
sk← Z∗p, and computes sk · [1]1 and returns (pkSign, skSign) := ([sk]1 , sk).

� Signing, [σ]2 ← Sign(skSign,m): Given system parameters, a secret key
skSign, and a message m, computes [σ]2 = [1/(m+ sk)]2 and returns [σ]2
as the signature.

6 It has 25.538 gates in the xjsnark library, https://github.com/akosba/xjsnark.

https://github.com/akosba/xjsnark
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� Veri�cation, {1, 0} ← SigVerify(pkSign, [σ]2): Given a public key pkSign, a
message m, and a signature [σ]2, veri�es if [m+ sk]1 • [1/(m+ sk)]2 = [1]T ;
if so, it returns 1; otherwise it returns 0,

where • denotes the paring operation. In our case, we use the same bilinear group
as in the original zk-SNARK and m would be the hash (e.g. with SHA224 or
SHA256) of concatenations of the proof elements with the statement, i.e. m :=
H(x‖z0‖π)7. As it can be seen, the scheme generates a single-element signature
from G2, its public key is an element from G1, and above all its veri�cation only
requires one paring. Note that [1]T can be preprocessed and shared in the CRS.

So by considering the above instantiation, new proof π′ = (µ, π, pkSign, [σ]2)
will be as π′ = (µ, π, [sk]1 , [1/(m+ sk)]2) where from original scheme π =
([a]1 , [b]2 , [c]1), and µ is an output of the pseudo random function fs(·), which
is instantiated with SHA-256 hash function [KMS+16]. As a result, the proof
in new scheme will be 3 elements from G1, 2 elements from G2 and one 256-bit
string. Consequently, new changes add only one paring to the veri�cation of orig-
inal scheme. To the best of our knowledge, this is the �rst simulation-extractable
zk-SNARK in the CRS model which its veri�cation is dominated with 4 pairings.

Next, we empirically analyse e�ciency of the proposed scheme from di�erent
perspectives. Tab. 2 summarizes asymptotic and empirical performance of new
scheme and two zk-SNARKs proposed by Groth's [Gro16] and GM [GM17].
Implementations of Groth's [Gro16] and GM [GM17] zk-SNARKs are available
in libsnark library [BCTV13] 8, so similarly implementation of new scheme is
done in the same library.

In Tab. 2, all implementation results are reported for the same R1CS in-
stance. In the rest of analysis, we evaluate e�ciency of new scheme for di�erent
R1CS instances and compare with knowledge sound scheme of Groth [Gro16] and
simulation-extractable scheme of GM [GM17]. Strictly speaking, in top plots of
Fig. 2, we compare CRS size and CRS generation time of new scheme with the
mentioned zk-SNARKs for R1CS instances with 100 input variables and di�er-
ent number of MUL gates, from range 25 × 103 till 2 × 106 gates. Similarly, in
bottom left of Fig. 2, we plot prover's running time in three zk-SNARKs for
various R1CS instances with 100 input variables and di�erent number of MUL
gates. Finally, the plot in bottom right of Fig. 2, compares the veri�cation time of
new SE zk-SNARK for various R1CS instances with 105 constraints and various
number of input variables.

From the comparisons in Tab. 2 and empirical analysis in Fig. 2, one can
observe that in order to give non-malleable proofs for an arithmetic circuit sat-
is�ability in circuits with larger than 50 × 103 MUL gates, the proposed SE

7 As shown in [BB08], by taking hash of input message the signature scheme can be
used to sign arbitrary messages in {0, 1}∗.To do so, a collision resistant hash function
H : {0, 1}∗ → {0, . . . , 2b} such that 2b < p is su�cient [BB08]. By considering recent
analysis on Barreto-Naehrig curves by Kim and Barbulescu [BD17], one can use
di�erent settings for various security levels which would need to use di�erent hash
functions for signing arbitrary messages in [BB08] signature scheme.

8 Available on https://github.com/scipr-lab/libsnark

https://github.com/scipr-lab/libsnark
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Table 2: An e�ciency comparison of new scheme with Groth's [Gro16] and
GM [GM17] zk-SNARKs for arithmetic circuit satis�ability with m0 elements
instance, m wires, n MUL gates. In [GM17], n MUL gates translate to 2n squar-
ing gates. Implementations (Implem.) are done on a Laptop with 2.50 GHz Intel
Core i5-7200U CPU, with 16GB RAM, in single-threaded mode, for an R1CS
instance with n = 106 constraints and m = 106 variables, of which m0 = 10
are input variables. G1 and G2: group elements, E: exponentiations, P : pair-
ings. In the new scheme, the statement contains (x, µ, pkSign, ρ) which has 3 new
elements (µ, pkSign, ρ), so m

′
0 = m0 + 3. All asymptotic analysis of new scheme

are done based on our particular instantiation of commitment and pseudo ran-
dom function. So, as new changes add ≈ 50 × 103 MUL gates to n and m, so
n′ = n+ 50.000 and m′ = m+ 50.000.
SNARK CRS size & gen. time Proof size Comp. & time of P V Sec.

m+ 4n+ 5 G1

2n+ 3 G2

2 G1

1 G2

m+ 4n−m0 E1

2n E2

m0 E1

5 P
[GM17]

&
Implem. 376 MB, 103 sec 127 bytes 120 sec 2.3 ms

SE

m+ 2n−m0 G1

n+ 3 G2

2 G1

1 G2

m+ 3n−m0 + 3 E1

n+ 1 E2

m0 E1

3 P
[Gro16]

&
Implem. 196 MB, 75 sec 127 bytes 83 sec 1.4 ms

KS

m′ + 2n′ −m′0 + 5 G1

n′ + 3 G2

3 G1 + 2 G2

1 bit string
m′ + 3n′ −m′0 + 4 E1

n′ + 2 E2

m′0 + 1 E1

4 P
Sec.3.1

&
Implem. 205 MB, 80.5 sec 254 bytes 90.1 sec 2.0 ms

SE

zk-SNARK can outperform GM SE zk-SNARK considerably. Note that, how-
ever new construction has larger proof size than GM zk-SNARK, 254 bytes in
comparison with 127 bytes, but still its veri�cation requires smaller number of
pairings, and in the worst cases it is as e�cient as veri�cation of GM SE zk-
SNARK [GM17].

5 Conclusion

We proposed a variation of the state-of-the-art zk-SNARK [Gro16] which can
achieve simulation extractability; consequently allows to generate non-malleable
succinct proofs. We used an e�cient OR construction to de�ne a new language
L′ from the language L in original scheme, that led to some changes in the al-
gorithms of original scheme. Analysis and implementation results showed that
in practical scenarios, new changes have minimal e�ect on the e�ciency of orig-
inal scheme which currently is the most e�cient paring-based zk-SNARK in the
CRS model [Gro16]. Precisely speaking, evaluations showed that for arithmetic
circuits with larger than ≈ 50 × 103 MUL gates, the proposed SE zk-SNARK
outperforms GM SE zk-SNARK [GM17]. We emphasize that in current real-life
systems that use zk-SNARKs, their underlying arithmetic circuits have much
more larger number of gates than 50× 103. For instance, in Zerocash cryptocur-
rency [BCG+14] their current circuit for pour transactions has 2 × 106 MUL
gates; or similarly in Hawk smart contract system [KMS+16], their circuit for
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Fig. 2: A comparison of various e�ciency metrics in zk-SNARKs of
Groth [Gro16], Groth-Maller [GM17] and the proposed variation. Except the
plot of veri�cation time in zk-SNARKs (bottom right), all plots are drawn for
R1CS instances with 10 input variables and various number of constraints (multi-
plication gates). In the plot of veri�cation time (bottom right), we draw running
time of veri�ers in all three zk-SNARKs for R1CS instances with 105 constraints
and di�erent number of inputs.

�nalize operation in an auction with 50 bidders has around 4× 106 MUL gates.
In comparison with GM SE zk-SNARK [GM17], however proof of new scheme is
extended slightly, but still its total size is less than 256 bytes for 128-bit security;
and importantly its veri�cation is dominated with smaller number of pairings,
that allows very e�cient veri�cation.

At the end, we highlight that the proposed scheme can be used to construct
an e�cient succinct signature of knowledge scheme, which would be more e�cient
than the one that is proposed by Groth and Maller [GM17].
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